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Flapping flight is ubiquitous in Nature, yet cilia and flagella, not wings, prevail in
the world of micro-organisms. This paper addresses this dichotomy. We investigate
experimentally the dynamics of a wing, flapped up and down and free to move
horizontally. The wing begins to move forward spontaneously as a critical frequency
is exceeded, indicating that ‘flapping flight’ occurs as a symmetry-breaking bifurcation
from a pure flapping state with no horizontal motion. A dimensionless parameter,
the Reynolds number based on the flapping frequency, characterizes the point of
bifurcation. Above this bifurcation, we observe that the forward speed increases
linearly with the flapping frequency. Visualization of the flow field around the heaving
and plunging foil shows a symmetric pattern below transition. Above threshold, an
inverted von Kármán vortex street is observed in the wake of the wing. The results
of our model experiment, namely the critical Reynolds number and the behaviour
above threshold, are consistent with observations of the flapping-based locomotion
of swimming and flying animals.

1. Introduction
Steady locomotion of an object through a fluid implies that the thrust in the

direction of travel balances the resistance from the fluid. This equilibrium involves
contributions from viscous as well as inertial forces. According to classical inviscid
aerodynamic theory, a flapping wing translating at fixed speed can generate a
propulsive force (von Kármán & Burgers 1935; Garrick 1937). But when the Reynolds
number is small, viscous forces dominate, reciprocal flapping motions are ineffective,
and the translating wing can only experience a net drag (Purcell 1977; Childress 1981;
Childress & Dudley 2004).

For a flat wing with characteristic chord c, periodically driven at frequency f and
amplitude a, the relative importance of viscous and inertial forces is measured by the
driving Reynolds number

Ref =
ρf ac

η
(1.1)

where f a measures the oscillating speed, ρ is the fluid density and η is the dynamic
viscosity. In the ‘Stokesian’ realm, Ref � 1, viscous forces dominate. Organisms
then typically use ‘non-reciprocal drag-based propulsion’, examples being oar-like
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(Williams 1994), ciliary (Blake & Sleigh 1974) and flagellar (Lighthill 1976) propulsion.
Modes of these types are in fact observed over a wide range of Reynolds numbers
(McHenry, Azizi & Stroher 2003; Blake 1979). However, at Reynolds numbers
above 10, flapping motions are observed among flying and swimming organisms
(Walker 2002). Flapping mechanisms of thrust production, often referred to as
lift-based, are characteristic of the high Reynolds number or ‘Eulerian’ realm,
where discrete vortical structures are shed and flight mechanisms associated with
inviscid fluids become applicable (Vogel 1994). Some organisms modify their mode
of locomotion as their hydromechanical environment changes: the pteropod molluscs
Clione antarctica change from ciliary to flapping propulsion as their swimming speed
increases (Childress & Dudley 2004) and the cephalopods Vampyroteuthis infernalis
change from jet-based to flapping propulsion as their size increases (McHenry et al.
2003). One natural proposition is that the ability to use a new swimming mode reflects
a decisive change in the dynamical response of the fluid to body movements as the
Reynolds number increases.

To address this question, we devised an experiment that is based upon the simplest
possible reciprocal flapping movement, a plunging/heaving motion. It is important
to point out that a wide variety of flapping movements exists in Nature, leading to
efficient lift generation, thrust production and manoeuvrability. Our study chooses
to focus on the purest flapping motion. This reciprocal motion is ineffective in the
Stokesian realm, but effective in the Eulerian realm. It therefore allows us to study the
onset of thrust production as Reynolds number is increased. Nearly reciprocal flapping
movements are observed in the propulsive motions of some smaller organisms such
as small flies (Vogel 1967) and larval pteropods (Childress & Dudley 2004). Many
experiments and numerical computations (Tobalske 2000; Anderson et al. 1998;
Dickinson, Lehmann & Sane 1999; Jones, Dohring & Platzer 1998; Wang 2000)
measure or compute the force experienced by a wing effecting a prescribed motion.
In contrast, our investigation concerns a wing which, while driven by the imposed
vertical motion, is ‘free to fly’ in the direction orthogonal to this motion.

2. Experimental results
2.1. Experimental setup

In our experiment, we make use of a rotational geometry (figure 1). We employ
a horizontal flat rectangular wing, of length 2d (d = 7.6 cm) and chord c = 1.9 cm.
The centre of the wing is attached to a vertical shaft. The wing is immersed in a
water-filled cylinder (30 cm diameter, 12 cm depth) covered with a lid (not shown on
figure 1). The shaft is then driven sinusoidally in the vertical direction. Two low-
friction ball bearings separate the driving mechanism from the shaft. Thus the wing
is free to rotate about the vertical axis. The wing is 0.16 cm thick and is made of
stainless steel. Under the forces concerned in this work the deflection of the wing due
to its elasticity would be merely 1 µm, and thus the wing is considered to be rigid.
Obviously, due to the rotational geometry of the setup, any sidewise translational
motion is prohibited.

There is no direct source of angular momentum in the driving mechanism. Any
rotational motion of the wing would purely be a consequence of the generation of
horizontal forces from the fluid. The net torque acting on the wing would result from
all forces applied at the wing. If the system moves into a rotational state, we regard
the wing as performing ‘forward flight’.
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h(t) = a sin (2πft)

2dc

Figure 1. Sketch of the experimental apparatus. A rigid flat wing is flapped sinusoidally in
the vertical direction. The shaft together with the attached wing is allowed to freely rotate
about the vertical axis, in the horizontal plane. The wing has a length 2d = 15.2 cm, width
(chord) c = 1.9 cm and thickness 0.16 cm. The amplitude of flapping is a = 1.4 cm and the
driving frequency changes from 0 up to 6Hz. The rotation of the wing is characterized by the
rate Ω , and we use D = 3d/4 as a representative wing span (see text).

To characterize the rotating system, we use a rotational Reynolds number. We
define it as the ratio between a characteristic inertial torque

Ti =

∫ d

0

Ciρc(rΩ)2r dr, (2.1)

and a characteristic viscous torque

Tv =

∫ d

0

Cvη(rΩ)r dr (2.2)

where Ω is the rotation rate (in rad s−1). Cv and Ci are functions of Ref . ReΩ is
defined as Ti/Tv , with Cv set to be equal to Ci for simplicity, and thus

ReΩ =
3ρcdΩ

4η
; (2.3)

3dΩ/4 is the linear speed of the wing at disk D = 3d/4, or 3/4 of the shaft to
tip distance. At position D, a representative length of the wing, we perform flow
visualization and compute the Strouhal number.

An aluminum disk of 12 cm diameter, not shown in figure 1, is attached to the top
of the shaft. The position of two high contrast dots drawn on the disk are recorded
with a video camera at 60 frames per second. Custom software tracks the motion of
the dots, allowing the determination of the angular position (precision of the order
of 1.5◦) of the wing and thus the rotational speed.

2.2. Results

To vary the driving Reynolds number, we fix the flapping amplitude at 1.4 cm and
vary the frequency of vertical oscillation f . When Ref < 390, the system remains
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Figure 2. Measurements of the rotational speed as a function of the driving frequency, in
non-dimensional form, in water. Hysteresis and bistability are apparent from the measurements.
The experimental data, rotational speed vs. driving frequency, are fitted well by a straight
line.

essentially stationary in the horizontal plane. The wing exhibits small excursions in
either direction with arc amplitudes well below the chord length. In this regime, the
non-rotating state is stable and any rotational motion initiated externally is damped.

An abrupt transition occurs at Ref ≈ 500 (f ≈ 1.9 Hz). The system moves spon-
taneously to a stable, rotating state, and reaches a steady rotational speed after 5 to
50 flapping periods. The wing can rotate in either direction, with essentially equal
probability. Once the direction is chosen, it does not change. The speed stays constant
to within 5% over 100 flapping periods. Figure 2 shows the dimensionless rotational
speed of the wing, ReΩ , as a function of its dimensionless flapping frequency, Ref . The
transition from stationary flapping to rotation exhibits hysteresis and bistability: the
rotating state persists as Ref is lowered to below 500, and stops at a value Restop

f = 390.
Between 390 and 500, the system can be in either state (rotating or non-rotating).
These features are characteristic of a subcritical bifurcation. Between 480 and 1600
(the upper limit of our experiment), the relation between Ref and ReΩ is strikingly
linear with a slope of 1/0.26. As one approaches the onset of the rotation, this linearity
is lost, and the experimental data lie below the fitted straight line. Extrapolation of
the linear portion to ReΩ = 0 yields an apparent critical Reynolds number, Reapp

f , of
about 170.

We obtained the same results (threshold and slope within 3%) using different
tanks: (i) a cylinder with diameter 20 cm and height 10 cm; (ii) a square container
with side length 38 cm and height 12 cm. We also performed experiments using
different wing spans, respectively d = 5.9 cm and d = 4.3 cm, and did not observe
qualitative differences. All of them yielded a transition to rotation characterized by
respectively Restop

f = 825 and Restop
f = 1020 and all of them resulted in a straight line

(ReΩ vs. Ref ) with the same slope of 1/0.26. The increase of the values of Restop
f for

decreased wingspan is due to the relative strength of the hydrodynamic torque, which
increases with increasing d , and the constant friction of the bearings (see § 2.4).
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2.3. Flow visualization

The mechanism leading to symmetry breaking is hydrodynamical. To further
investigate the interaction of the wing with the fluid, we perform visualization of
the flow structures at wing position D =3d/4. A 30 V DC potential difference is
applied between the metallic wing and the fluid. This induces the production of
micron-sized hydrogen bubbles at the sharp edges of the wing. These bubbles are
small enough to stay suspended in the fluid for several minutes and they act as
Lagrangian tracers. The production level of the bubbles can be enhanced by adding a
small amount of table salt. A slide projector and a slotted slide are used to illuminate a
5 mm thick sheet within the fluid. The light sheet is parallel to the axis of rotation but
is at a distance D away from the shaft. Both still photographs and video recordings
are made when the long axis of the wing is nearly perpendicular to the light sheet.
For still photographs, shutter speed is set at 1/20th of a second in order to obtain
streaklines that reveal the flow structure.

At low Ref , the flow structure is left–right symmetric as shown by figure 3(a),
and no thrust production is observed (ReΩ =0). As the Reynolds number increases,
the coupled wing/fluid system undergoes symmetry breaking. Any disturbance of
the wing in the horizontal plane engenders an effective angle of attack during the
stroke and thus causes an asymmetry in the flow structure. Leading- and trailing-edge
vortices appear. Figure 3(b) shows a drawing of the flow pattern for an accelerating
wing, drawn after observations of video recordings. The trailing-edge vortex (Va) is
released into the wake. The leading-edge vortex (Vb) induces suction pressure forces
at the leading edge of the wing and positive (as opposed to resistive) viscous stresses
on the upper right part of the wing. The interaction with the leading-edge vortex
created at the preceding upstroke (Vc) also induces positive viscous stresses on the
lower side of the wing.

When the wing rotates, a highly structured wake is formed (figure 3c). With each
flapping period, two counter-rotating eddies are shed into the wake. An ‘inverted’ von
Kármán vortex street is clearly observed. This flow pattern is characteristic of thrust
production by oscillating wings (Anderson et al. 1998; von Kármán & Burgers 1935)
and is similar to the wake pattern observed behind swimming fish (Müller et al. 1997;
Rosen 1959). The flow visualization also confirms that the wake diffuses and decays
quickly (figure 3c). As the following half-wing comes into this region, it encounters a
fluid environment where the flow is orders of magnitude weaker and with no apparent
structure.

The Strouhal number,

St =
f a

DΩ
=

Ref

ReΩ

, (2.4)

is a fundamental parameter for the dynamics of the wake; it attains the asymptotic
value 0.26 as Ref increases. Previous studies of an oscillating wing by Triantafyllou,
Triantafyllou & Grosenbaugh (1993) have regarded the range 0.25 < St < 0.35 as
optimal for thrust production at high Reynolds number. The data collected by these
authors and more recently by Taylor, Nudds & Thomas (2003) also show that flying
and swimming organisms perform propulsive motion in the same range of Strouhal
number. Because Reapp

f is greater than zero, the Strouhal number increases with
decreasing driving Reynolds number in our experiment.

The observed flow pattern is quasi-two-dimensional. Flow visualization at different
positions (between 0.5d and 0.9d) were consistent with the pattern shown in
figure 3. Close to the extremities of the wing, the flow structure presents a more
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Figure 3. Visualization of the flow structure around the flapping wing. The white shadows in
the background of the photographs indicate the position of the shaft. (a) The flow structure
around a wing at low Ref (≈ 60), in its stable non-rotating state. (a’) The direction of the
wing motion and the flow structure corresponding to (a). (b) The flow structure associated
with the accelerating wing. (c) The wake of the wing in the rotating state exhibits an ‘inverted’
von Kármán vortex street. This picture was taken after many (more than 100) revolutions
of the wing. Due to the relatively low Reynolds number (≈ 500), the wake diffuses fast and
its influence at the following half-revolution is limited. (c’) The direction of the flow and the
motion of the wing (dashed line).

three-dimensional aspect. However, three-dimensional flow structures appear over a
very limited spatial range and consequently their effect on the wing is greatly reduced.
Similarly, the flow patterns close to the centre (at the axis) of the wing exhibit a
complicated three-dimensional structure, because of the asymmetry induced by the
rotational geometry. However, the contribution of this part of the wing to the overall
torque is small because the distance from the axis of rotation is short.

2.4. The effect of friction

The dynamics of the wing is unavoidably influenced by the friction of the bearings
supporting the shaft. This adds a resistive torque that opposes forward motion like
the drag on the body of a swimming or flying organism. It delays the transition
to forward flight and increases the critical Reynolds number. To characterize the
finite friction of the bearings, we measure the free decay of the shaft rotation,
without the wing and without driving. The frictional torque due to the bearings
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Figure 4. Response of the system with increased viscosities. (a) The dynamic viscosity is
increased from 1 to 15.1 cP by using different water/glycerol mixtures to reduce the relative
influence of bearings friction. The dashed line is the fitted straight line for water (figure 2).
For clarity, the hysteretic behaviour is not shown. (b) Re

app
f the extrapolated value at ReΩ = 0

and Re
stop
f , the value at which rotation stops, are plotted as functions of 1/η.

can then be modelled by Tfric = 0 if Ω = 0 or Tfric = −T0Ω/|Ω | − βΩ if Ω �= 0,
with T0 = 1.5 × 102 dynes cm and β = 25 dynes cm s, the inertia of the rotating system
(without the wing) being 9.2 × 102 gm cm2. To estimate the relative effect of fluid
viscosity, we consider the ratio of frictional torque to typical fluid torques. From the
characteristic intrinsic hydrodynamic force, η2/ρ, needed to move a body at Reynolds
number 1 (Purcell 1977), we construct the characteristic hydrodynamic torque η2D/ρ.
Naturally T0/(η

2D/ρ) measures the ratio between the external torque T0 and the
hydrodynamic torque. In the same way, using the characteristic viscous torque ηD3Ω

(see equation (2.2)), we form the dimensionless number β/ηD3 to measure the ratio
between the damping due to bearings friction and the viscous damping from the fluid.
When the viscosity of the fluid increases, those two dimensionless numbers decrease.
Thus increasing η lowers the relative resistance to forward motion due to friction.
However, hydrodynamic loads associated with driving could affect the bearing friction
and induce more complicated behaviour.

Figure 4(a) shows the measurement of ReΩ as a function of Ref with water/glycerol
mixtures of different viscosities to approach the limit of a frictionless system, i.e. a
wing experiencing only hydrodynamic forces. At the increased viscosities, well beyond
the onset of forward flight, all experimental data showed robustly high linearity with
the same slope (1/0.26). Both the apparent critical Reynolds number Reapp

f , and the
Reynolds number Restop

f at which rotation stops as Ref is lowered, decrease as viscosity
is increased (figure 4b). The values of Reapp

f decrease linearly with 1/η, with a limit of
about 20 as the viscosity goes to infinity. The data for each viscosity lie on or below
this extrapolated straight line, so we may take 20 as a lower bound on the critical
Reynolds number without friction. The values of Restop

f also decrease with 1/η and
in the limit of large viscosity they yield an upper bound on the critical Reynolds
number. Conservatively, linear extrapolations of both Restop

f and Reapp
f shown on figure

4(b) suggest that the bifurcation for a frictionless system should occur in the range
20 < Ref < 55. For each viscosity, the transition exhibits hysteresis and bistability.
However, the nature of the bifurcation appears to be rather complex in the presence
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of friction and states with lower rotational speed are observed slightly above threshold
at the lower viscosities. Our experiment does not allow us to rule out the hypothesis
of a limiting supercritical bifurcation for a frictionless wing. Numerical studies may
be able to settle this issue.

3. Conclusion
Our data support the existence of a sharp bifurcation to flapping flight for a

frictionless system, in the range 20 <Ref < 55. This range agrees with results of
comparative study by Walker (2002) but is somewhat larger than the transitional
Reynolds numbers observed for Clione antarctica by Childress & Dudley (2004). In
Nature, the lift-based propulsive motions are in general much more complicated than
our pure heaving and plunging wing, and generally include a pitching mode modifying
the angle of attack. The hydrodynamic mechanisms involved in the transition in our
model system are likely to lead to a dramatic increase in the thrust produced by a
heaving and pitching wing in the range of intermediate Reynolds number.

Our data also show a striking and robust linear relationship between forward speed
and flapping frequency above the critical Reynolds number. Though not a universal
feature of animal locomotion, this linearity has been observed in the swimming of
some fish using their pectoral (Drucker & Jensen 1996) or caudal (Bainbridge 1958)
fins. The value of the Strouhal number at moderately high Reynolds number (1600)
agrees with values previously published as optimal for thrust production. Our system
shows that this regime is obtained very naturally for a freely swimming system, as
a result of the equilibrium between thrust and drag. Thus no fine tuning of the
propulsive motion is needed to attain the optimal Strouhal number.
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has been supported by the National Science Foundation (Grant No. DMS-9980069)
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